

April 22, 2022

Erika Malone City of Seattle, Office of Housing 700 5th Avenue, Suite 5700 Seattle, Washington 98104

RE: Preliminary Phase II Subsurface Investigation MLK Grassy Lot, Site 11 5042 Martin Luther King Junior Way South Seattle, Washington 98118 RGI Project No. 2021-552-17

Dear Ms. Malone:

The Riley Group, Inc. (RGI) is pleased to present our Preliminary Phase II Subsurface Investigation (Phase II) for the above-referenced MLK Grassy Lot, Site 11 located at 5042 Martin Luther King Junior (Jr.) Way South in Seattle, Washington (hereafter referred to as the Property, Figure 1). Authorization for this project was provided by Ms. Laurie Olson of the City of Seattle on March 2, 2022.

PROJECT BACKGROUND

RGI completed, on behalf of the City of Seattle, Office of Housing, a Phase I Environmental Site Assessment (ESA) on September 30, 2021 (RGI project number 2021-552-9). Based on our Phase I ESA findings, the following recognized environmental conditions (RECs) were identified:

NGOCs Inc. Contaminated Soils: The NGOCs Inc. property (aka Sound Transit RV112 R-O-W, and NGOC's Auto Repair Inc.) is located at 5061 Martin Luther King Jr. Way South, approximately 100 feet southwest, and cross- to up- of the Property. Petroleum contaminated soil (PCS) was discovered in a 6-foot wide strip of land ("fee take area") along the west edge of Martin Luther King Jr. Way South. CDM Smith (CDM) concluded that source of the odors encountered in the side utility trench was likely the auto repair activities ongoing at the property. The contaminated soil was successfully removed from the "fee take area", but CDM indicated that some contaminated soil likely remains on the Pham/Huaong property, and that it has the potential to migrate. CDM also noted that contamination may remain along the western and eastern limits of the excavation. Based on CDM indicating that contamination may still remain in the limits of the remedial excavation, CDM indicating the potential for further contamination migrating from the Pham/Huaong [NGOCs Inc.] property, distance from the Property (approximately 100 feet), and location relative to the Property (cross- to up-gradient), RGI concludes that the NGOCs Inc. property (aka Sound Transit RV112 R-O-W, and NGOC's Auto Repair Inc.) located at 5061 Martin Luther King Jr. Way South was a REC.

Additionally, the following BER was identified in connection with the Property:

Potential Property Fill of Unknown Origin: 2013 CDM Smith Phase II investigations for nearby properties identified up to 12 feet of fill on various properties along the corridor of Martin Luther

Corporate Office 17522 Bothell Way Northeast Bothell, Washington 98011 Phone 425.415.0551 ♦ Fax 425.415.0311

www.riley-group.com

King Jr. Way South which contained debris, concrete, brick, pipe, wire, and wood. CDM Smith indicated that such soils may not be suitable for disposal at a clean landfill if excavated for redevelopment. Based on the 2013 Phase II description of fills encountered on neighboring properties and the unknown origin of such fill materials, RGI considered the potential fill soils at the Property to be a BER.

RGI recommended conducting a Preliminary Phase II Subsurface Investigation to evaluate potential impacts to soil and shallow groundwater from the above noted REC and BER.

At the request of the City of Seattle, Office of Housing (hereafter referred to as the Client), RGI has prepared this Phase II report to evaluate the above summarized potential environmental concerns.

SCOPE OF WORK

The scope of work for this project was performed in accordance with our proposal, dated March 1, 2022 and included the following:

- Performed public and private utility locating in an attempt to identify the location(s) of buried utility lines servicing the building on the Property.
- Relied on information developed for the Phase I ESA of the Property in order to determine test probe location placement in relation to areas of potential contamination.
- Advanced four test probes (TP1 through TP4) throughout the Property, to depths between 6.5 feet to 9 feet below ground surface (bgs).
- Submitted select soil samples for laboratory analysis of potential contaminants of concern.
- Compared analytical results to the Washington State Department of Ecology (Ecology) Model Toxics Control Act (MTCA) Method A Soil Cleanup Levels (CULs) for Unrestricted Land Use. In instances where no MTCA Method-A CULs were published for particular analytes, MTCA Method-B CULs were utilized.
- > Prepared this report presenting our findings, observations, conclusions, and recommendations.

SUBSURFACE INVESTIGATION AND SAMPLING

Private and Public Utility Locate

At least 48 hours prior to commencing our subsurface investigation, RGI contacted One-Call to locate known public underground utilities near, or on, the Property. Public underground utilities located included electric, natural gas, telecommunications, water, sewer, and cable.

RGI also retained a private utility locator to locate private water, natural gas, electric, and other metallic underground utility conduits potentially located in the proposed test probe locations. A metal pipe approximately 1" in diameter was observed extending approximately 2.5' from the ground surface near the northeast corner of the Property. Utilizing the utility location equipment, effort was made to trace the pipe to its subsurface origin however the pipe did not appear to extend in any direction from its base. No larger metallic signature/anomaly was identified proximal to the pipe. The purpose of the pipe (i.e. gas pipe, vent line, etc.) was not determined at the time of the utility location work.

Subsurface Investigation

On April 11, 2022, four test probes (TP1 through TP4) were advanced to depths ranging from approximately 6.5 to 9 feet bgs depending on subsurface material density encountered. Test probes were

advanced using a Geoprobe 7800 hydraulic drill. Test probe locations are shown on Figure 2 and described below.

Test probe TP1 was placed at the southwest corner of the Property at the closest approach from the off-Property NGOCs Inc. contaminated site. Test probe TP2 was installed near the southeast corner of the Property, proximal to a former shed. TP3 was drilled near the northeast corner of the Property, proximal to the observed metal pipe. TP4 was placed near the northwest Property line, proximal to Martin Luther King Jr. Way South.

Subsurface Conditions

Soil conditions encountered were described using the Unified Soil Classification System (USCS). Shallow soils encountered between the ground surface and approximately 9 feet in depth generally consisted of silty sand. Gravels were also observed within the silty sands at the deeper extent of the test probes (between 5' to 9' depending upon location). No odors or evidence of contamination was observed in the soil depths explored. While moist conditions were noted at several of the test probe locations, no recoverable groundwater was present within the test probes. Test probe logs are included in Appendix A.

Soil Sampling

Discrete soil samples from test probes were generally collected at approximately 2.5 to 5-foot intervals, inspected, and field screened for the presence of volatile organic compounds (VOCs) and/or total petroleum hydrocarbons (TPH) using a portable gas photoionization detector (PID) and water sheen test. As noted above, no odors, sheens, or elevated PID readings indicative of contamination were observed. PID field screening results are given in Table 1.

Sampling Protocols

All samples were collected in accordance with our standard operating and decontamination procedures. Samples were placed in preconditioned, sterilized containers provided by an Ecology-accredited analytical laboratory. If soil samples were collected for analysis of VOCs, they were collected using the Environmental Protection Agency's Method 5035 sampling method. The samples were placed in a chilled cooler throughout the field program, with all subsequent transportation and transfer accomplished in strict accordance with RGI's chain-of-custody procedures. Analytical test certificates, including quality control, data, and chain-of-custody documentation for all samples submitted to the analytical testing laboratory by RGI as part of this Phase II are included in Appendix B. All soil sample locations were backfilled with bentonite.

REGULATORY FRAMEWORK

Washington's hazardous waste cleanup law, the Model Toxics Control Act (Chapter 70.105D RCW), mandates the necessity for site cleanups to protect human health and the environment. The MTCA Cleanup Regulation (Chapter 173-340 WAC) defines the approach for establishing cleanup requirements for individual sites, including the establishment of cleanup standards and selection of cleanup actions.

The MTCA Cleanup Regulation provides three options for establishing generic and site-specific cleanup levels for soil and groundwater. Method A cleanup levels have been adopted for specific purposes and are intended to provide conservative cleanup levels for sites undergoing routine site characterization or cleanup actions or those sites with relatively few hazardous substances. Method B and C cleanup levels are set using a site risk assessment, which focus on the use of "reasonable maximum exposure" assumptions based on site-specific characteristics and toxicity of the contaminants of concern.

For purposes of comparison, analytical laboratory data for this project are compared to the *MTCA Method A Soil CULs for Unrestricted Land Uses* (except in instances where no MTCA Method-A CULs were

published for particular analytes, MTCA Method B CULs were utilized), summarized in the attached Table 1.

ANALYTICAL LABORATORY ANALYSIS

Soil samples were submitted to Friedman & Bruya, Inc. (FBI), an Ecology-accredited, third-party analytical laboratory for the requested analyses.

Select soil samples were submitted for laboratory analysis. The samples were analyzed for one or more of the following contaminants of concern:

- Hydrocarbon identification (HCID) using qualitative Northwest Method NWTPH-HCID (six discrete soil samples).
- > Volatile organic compounds (VOCs) using 8206 (four discrete soil samples).
- > MTCA Five Metals using EPA Test Method 6020B (four discrete soil samples).

ANALYTICAL RESULTS

Analytical results and field screening data, summarized in the attached Table 1 and Figure 2, are discussed below. Copies of the analytical laboratory reports and associated sample chain-of-custody forms are included in Appendix B.

Soil Analytical Results

Soils sampled from each of the test probes contained concentrations of arsenic, chromium, and lead however all detected concentrations were below (i.e. compliant with) their applicable MTCA Method A cleanup levels.

Analytical lab results for the remaining soil samples analyzed indicate concentrations for selected analyses were not detected above laboratory analytical detection limits (i.e., non-detect).

CONCLUSIONS & RECOMMENDATIONS

Based on our findings to-date, RGI concludes and/or recommends the following:

- Contamination above MTCA Method A CULs was not encountered in the soil samples analyzed at the Property.
- Acknowledging the subsurface density which prevented exploration of depths below 9 feet bgs and preventing groundwater sampling, if groundwater sampling and testing is still desired by the Client (as such would help determine whether impacts are migrating from off-Property sources), larger drilling equipment such as hollow-stem auger or sonic drilling would be required to reach deeper depths where groundwater may be present.

PROJECT LIMITATIONS

This report is the property of the City of Seattle, Office of Housing, and their authorized representatives or affiliates and was prepared in a manner consistent with the level of skill and care ordinarily exercised by members of the profession currently practicing in the same locality and under similar conditions. This report is intended for specific application to the MLK Grassy Lot, Site 11 Property located at 5042 Martin Luther King Jr. Way South, Seattle, King County, Washington. No warranty or guarantee, expressed or implied, is made.

The analyses and recommendations presented in this report are based upon data obtained from our review of available information at the time of preparing this report, test borings drilled on the Property,

or other noted data sources. The findings and conclusions of this study are based upon the results of laboratory testing of selected samples obtained from separated boring/probe locations and conditions may vary between those localities or at other locations, depths, media, or date. Conditional changes may occur through time by natural or human-made process on this or adjacent properties. Additional changes may occur in legislative standards, which may or may not be applicable to this report. These changes, beyond RGI's control, may render this report invalid, partially or wholly. If variations appear evident, RGI should be requested to reevaluate the recommendations in this report.

Please contact the undersigned at (425) 415-0551 should you have any questions or need additional information.

Sincerely, **THE RILEY GROUP, INC.**

Eric Zuern Project Geologist

Mg G Kr

Megan Poysnick, LG Senior Environmental Manager

Attachments:

Figure 1, Property Vicinity Map Figure 2, Property Representation with Soil Analytical Data

Table 1, Summary of Soil Sample Analytical Laboratory Results

Appendix A, Test Probe Logs Appendix B, Analytical Laboratory Reports and Chains of Custody

Distribution:

Ms. Erika Malone, City of Seattle, Office of Housing (PDF)

	HCID		Nanh	Other		Tot	al Me	tals			
Gas	5 DSL	Oil	Napii.	VOCs	As	Cd	Cr	Pb	Hg		
ND	ND	ND	ND	ND	4.59	ND	8.74	3.02	ND		
			TP2							٦ I	
	HCID										
Gas	5 DSL	Oil	марп.	VOCs	As	Cd	Cr	Pb	Hg		
ND	ND	ND	ND	ND	4.88	ND	4.75	5.84	ND		
			Δ	.pproxi	mate	Scal	e: 1"	=10'			
			0		5	10				20 N	
	igure 2										
er:	er: Property Representation with Soil Analytical Date Drawn: Data 04/2022										
Ma	rtin Lu	uther	[.] King	Jr. Way	/ Sou	th, S	eattle	e, Wa	ishi	ngton 98118	

			TP3						
	HCID		Nanh	Other		Tot	al Me	tals	
Gas	DSL	Oil	inapii.	VOCs	As	Cd	Cr	Pb	Hg
ND	ND	ND	ND	ND	4.59	ND	8.74	3.02	ND
			TP2						
	HCID			Other		Tot	al Me	tals	

Table 1. Summary of Soil Sample Analytical Laboratory Results

MLK Grassy Lot - Site 11

5042 MLK Jr. Way South, Seattle, Washington 98118

The Riley Group, Inc. Project No. 2021-552-17

Comple	Comple	Comple			BT	ΓEX			HCID				sis 1 2	trans 1.2			Other			1	Fotal Metal	s	
Number	umber Depth	Date	PID	В	т	E	х	Gasoline	Diesel	Heavy Oil	PCE	TCE	DCE	DCE	VC	1,1-DCE	VOCs	Naph.	As	Cd	Cr	Pb	Hg
TP1-2.5	2.5	04/11/22	0.4																				
TP1-5	5	04/11/22	0.4					ND<20	ND<50	ND<250													
TP1-7.5	7.5	04/11/22	0.3	ND<0.03	ND<0.05	ND<0.05	ND<0.15	ND<20	ND<50	ND<250	ND<0.025	ND<0.02	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND	ND<0.05	2.77	ND<1	10.6	3.06	ND<1
TP1-9	9	04/11/22	0.4																				
TP2-2.5	2.5	04/11/22	0.4																				
TP2-5	5	04/11/22	0.4	ND<0.03	ND<0.05	ND<0.05	ND<0.15	ND<20	ND<50	ND<250	ND<0.025	ND<0.02	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND	ND<0.05	4.88	ND<1	4.75	5.84	ND<1
TP2-7.5	7.5	04/11/22	0.4																				
TP2-8.75	8.5	04/11/22	0.4																				
TP3-2.5	2.5	04/11/22	0.4																				
TP3-5	5	04/11/22	0.4																				
TP3-6.5	6.5	04/11/22	0.4	ND<0.03	ND<0.05	ND<0.05	ND<0.15	ND<20	ND<50	ND<250	ND<0.025	ND<0.02	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND	ND<0.05	4.59	ND<1	8.74	3.02	ND<1
TP4-2.5	2.5	04/11/22	0.4																				
TP4-5	5	04/11/22	0.4					ND<20	ND<50	ND<250													
TP4-8.5	8.5	04/11/22	0.4	ND<0.03	ND<0.05	ND<0.05	ND<0.15	ND<20	ND<50	ND<250	ND<0.025	ND<0.02	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND	ND<0.05	3.03	ND<1	6.4	4.03	ND<1
MTCA N for	/lethod A Unrestrie	Soil Cleanu cted Land U	o Levels ses	0.03	7	6	9	100/30 ¹	2,0	000	0.05	0.03					Analyte Specific	5	20	2	19/2,000 ²	250	2
MTCA I for	Aethod B Unrestric	Soil Cleanu	o Levels										160	1,600	0.67 ⁴	4,000							

Notes:

All results and detection limits are given in milligrams per kilogram (mg/kg); equivalent to parts per million (ppm).

Sample Depth = Soil sample depth interval in feet below ground surface (bgs).

PID = Photoionization detector.

BTEX (benzene, toluene, ethylbenzene, and xylenes) determined using EPA Test Method 8021B or 8260D.

Gasoline, Diesel, and Oil HCID (hydrocarbon identification) determined using Northwest Test Method NWTPH-HCID.

PCE (tetrachloroethene), TCE (trichloroethene), cis-1,2-DCE (cis-1,2-dichloroethene), trans-1,2-DCE (trans-1,2-dichloroethene), VC (vinyl chloride), 1,1-DCE (1,1-dichloroethene), and other VOCs (volatile organic compounds) determined using EPA Test Method 8260D.

Naph. (naphthalene) determined using EPA Test Method 8270D SIM.

Total Metals (As = arsenic, Cd = cadmium, Cr = chromium, Pb = lead, Hg = mercury) determined using EPA Method 6020B.

ND = Not detected at a concentration above the analytical detection limit.

---- = Not analyzed or not applicable.

Washington State Department of Ecology (Ecology) Model Toxics Control Act (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses (WAC 173-340-900, Table 740-1). MTCA Method B Soil Screening Levels from Ecology's Cleanup Level and Risk Calculation (CLARC) database.

¹ The higher cleanup level is allowed if no benzene is present in the gasoline mixture and the total concentration of toluene, ethylbenzene and xylenes is less than 1% of the gasoline mixture.

² The higher cleanup level is allowed if no hexavalent chromium (CrVI) is present in the sample.

³ No MTCA Method A Cleanup Level has been established. Therefore, the MTCA Method B Non-Carcinogenic Standard Formula Value is listed for reference.

⁴ No MTCA Method A Cleanup Level has been established. Therefore, the MTCA Method B Carcinogenic Standard Formula Value is listed for reference.

Bold results indicate concentrations (if any) above laboratory detection limits.

Bold and yellow highlighted results indicate concentrations (if any) that exceed MTCA Method A or B Soil Cleanup Levels.

Test Probe No.: **TP1** Sheet 1 of 1

Date(s) Drilled: 04/11/22	Logged By: SK/TR	Surface Conditions: Grass
Drilling Method(s): Direct Push	Drill Bit Size/Type: 2.25"	Total Depth of Borehole: 9 feet bgs
Drill Rig Type: Geoprobe 7800	Drilling Contractor: Holocene	Approximate Surface Elevation: n/a
Groundwater Level: Not Encountered	Sampling Method(s): Continuous	Hammer Data: n/a
Borehole Backfill: Bentonite	Location: 5042 MLK Jr. Way South, Seattle, W	ashington 98118

mq			cent)				
ding, p		Type	/ (perc	Ę	et)		bo-
Read	nple I	nple 7	covery	Dept	oth (fe		phic I
DID	San	San	Rec	GW	Dep	MATERIAL DESCRIPTION	Gra
					0	Grass	
						Dark brown, silty SAND with organics, medium dense, moist	
						-	
0.4	TP1-2.5	\square			_	-	
			50%			Reddish brown, coarse, silty SAND, dense, moist, no odor, no sheen	
					-	-	
					-	-	
0.4	TP1-5						
					5-	Reddish brown, coarse, silty SAND, dense, moist, no odor, no sheen	
					-	-	
			100%				
0.3	TP1-7.5				-	-	
					-	Reddish brown, coarse, silty SAND, dense, moist, no odor, no sheen	
0.4	TP1-9		100%				
					-	Gray, coarse, silty SAND with gravel, medium dense, moist, no odor, no sheen	••••
						Test probe refused at 0 feet has	
					10 —	_ rest probe relusal at 9 reet bgs	-
					-	-	-
					-	-	-
					-	-	-
					-	-	-
		I			15		1
l l							

Test Probe No.: **TP2** Sheet 1 of 1

Date(s) Drilled: 04/11/22	Logged By: SK/TR	Surface Conditions: Grass
Drilling Method(s): Direct Push	Drill Bit Size/Type: 2.25"	Total Depth of Borehole: 8.75 feet bgs
Drill Rig Type: Geoprobe 7800	Drilling Contractor: Holocene	Approximate Surface Elevation: n/a
Groundwater Level: Not Encountered	Sampling Method(s): Continuous	Hammer Data : n/a
Borehole Backfill: Bentonite	Location: 5042 MLK Jr. Way South, Seattle, Wa	ashington 98118

D Reading, ppm	ample ID	ample Type	ecovery (percent)	<i>N</i> Depth	epth (feet)		aphic Log
٩	Š	ů	Ŗ	Ó	ĕ	MATERIAL DESCRIPTION	Ū
					0	Grass	\otimes
			90%		-	Dark brown, course, silty SAND with organics, medium dense, moist	
0.4	TP2-2.5						
			90%		-	Reddish brown, coarse, silty SAND, very dense, moist, no odor, no sheen - -	
0.4	TP2-5				5 —	Daddish kusun linkskum in slaves same sik. CAND dares mist se oder se skare	
			90%		-	Reddish brown, light brown in places, coarse, silty SAND, dense, moist, no odor, no sheen	
0.4	TP2-7.5					Liekt reddiek brown energe eite CAND with succed medium dense weist as edge as	
0.4	TP2-8.75		100%		-	Light reddish brown, coarse, slity SAND with gravel, medium dense, moist, no odor, no - sheen	
					-	- Test probe refusal at 8.75 feet bgs -	-
					- 10 - -	- Test probe refusal at 6.75 reet bigs	-
					15		

Test Probe No.: **TP3** Sheet 1 of 1

Date(s) Drilled: 04/11/22	Logged By: SK/TR	Surface Conditions: Grass
Drilling Method(s): Direct Push	Drill Bit Size/Type: 2.25"	Total Depth of Borehole: 6.5 feet bgs
Drill Rig Type: Geoprobe 7800	Drilling Contractor: Holocene	Approximate Surface Elevation: n/a
Groundwater Level: Not Encountered	Sampling Method(s): Continuous	Hammer Data : n/a
Borehole Backfill: Bentonite	Location: 5042 MLK Jr. Way South, Seattle, Wa	ashington 98118

-		_					_
PID Reading, ppm	Sample ID	Sample Type	Recovery (percent)	GW Depth	, Depth (feet)	MATERIAL DESCRIPTION	Graphic Log
					0-	Grass	\sim
0.4	TP3-2.5		50%		-	Dark brown, coarse, silty SAND with organics, medium dense, moist	
••••							
0.4	TP3-5		50%		-	Reddish brown, coarse, silty SAND, dense, moist, no odor, no sheen - -	-
					5 —	Deskisk have a star of the OAND side and the share share a star of the share s	
0.4	TP3-6.5		100%		_	Reddish brown, coarse, silty SAND with gravel, medium dense, moist, no odor, no sheen	-
						Test probe refusal at 6.5 feet bgs	
					- - - - - - - - - - - - -		-

Test Probe No.: **TP4** Sheet 1 of 1

Date(s) Drilled: 04/11/22	Logged By: SK/TR	Surface Conditions: Grass
Drilling Method(s): Direct Push	Drill Bit Size/Type: 2.25"	Total Depth of Borehole: 8.5 feet bgs
Drill Rig Type: Geoprobe 7800	Drilling Contractor: Holocene	Approximate Surface Elevation: n/a
Groundwater Level: Not Encountered	Sampling Method(s): Continuous	Hammer Data : n/a
Borehole Backfill: Bentonite	Location: 5042 MLK Jr. Way South, Seattle, W	ashington 98118

D Reading, ppm	ample ID	ample Type	ecovery (percent)	N Depth	epth (feet)		aphic Log
4	Š	ŝ	Ř	Ó	ĕ	MATERIAL DESCRIPTION	Ū
					0	Grass	
			80%		-	Dark brown, coarse, silty SAND with organics, medium dense, moist -	
0.4	TP4-2.5						
			80%		-	Reddish brown, coarse, silty SAND, very dense, moist, no odor, no sheen -	-
0.4	TP4-5		0070		5	-	-
					-	Reddish brown, coarse, silty SAND with gravel, dense, moist, no odor, no sheen	_
			100%		_	-	
0.4	TP4-8.5				-	-	-
					-	Test probe refusal at 8.5 feet bgs -	-
					10 —	_	
					-	-	
					-	-	
					-	-	
					15		

Project Name: Kenyon Street Vacant Lot - Site 11

Project Number: 2021-552-17

Client: City of Seattle, Office of Housing

Boring Log Key Sheet 1 of 1

PID Reading, ppm	Sample ID	Sample Type	Recovery (percent)	GW Depth	Depth (feet)			MATERIAL DES	CRIPTION	Graphic Log			
1	2	3	4	5	6			7		8			
COLU	MN DE	SCR	IPTION	<u>s</u>									
1 PI in 2 Sa 3 Sa sh 4 Re	D Readi parts pe ample ID ample Ty own. ecovery	ing, p er mil D: Sa ype: (pero	opm: The llion. mple ide Type of cent): Pe	e reading entification soil sam ercent Re	g from a on numb iple colle ecovery	photo-ionization de er. ccted at the depth ir	etector, hterval	 or, 5 GW Depth: Groundwater depth in feet below the ground surface. 6 Depth (feet): Depth in feet below the ground surface. 7 MATERIAL DESCRIPTION: Description of material encountered. al May include consistency, moisture, color, and other descriptive text. 8 Graphic Log: Graphic depiction of the subsurface material encountered. 					
FIELD	AND L	ABC	DRATOF	RY TEST	ABBRI	EVIATIONS							
CHEM COMF CONS LL: Lie	1: Chem P: Comp S: One-d quid Lim	nical t bactic dimer hit, pe	tests to a on test nsional c ercent	assess c consolida	corrosivit	y		PI: Plasticity Index, pe SA: Sieve analysis (pe UC: Unconfined comp WA: Wash sieve (perc	ercent ercent passing No. 200 Sieve) ressive strength test, Qu, in ksf cent passing No. 200 Sieve)				
MATE	RIAL G	RAF	PHIC SY	MBOLS									
	Grass	and/	or topso	il			Silty SAND (SM	1)					
TYPIC	AL SA	MPL	ER GRA	APHIC S	YMBOL	<u>S</u>			OTHER GRAPHIC SYMBOLS				
Au Bul 3-in bra	Auger sampler Continuous 2-i Bulk Sample Grab Sample Sh 3-inch-OD California w/ 2.5-inch-OD Modified Sh brass rings CME Sample Pitcher Sample							nch-OD unlined split bon (SPT) elby Tube (Thin-walled, ed head)	 ✓ Water level (at time of drilling, ATD) ✓ Water level (after waiting, AW) ✓ Minor change in material properties within a stratum – Inferred/gradational contact between strata –? – Queried contact between strata 				

GENERAL NOTES

1: Soil classifications are based on the Unified Soil Classification System. Descriptions and stratum lines are interpretive, and actual lithologic changes may be gradual. Field descriptions may have been modified to reflect results of lab tests.

2: Descriptions on these logs apply only at the specific boring locations and at the time the borings were advanced. They are not warranted to be representative of subsurface conditions at other locations or times.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 19, 2022

Eric Zuern, Project Manager The Riley Group, Inc. 17522 Bothell Way NE Bothell, WA 98011

Dear Mr Zuern:

Included are the results from the testing of material submitted on April 12, 2022 from the MLK Grassy Lot-Site11 2021-552-17, F&BI 204171 project. There are 17 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: skindley@riley-group.com TRG0419R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on April 12, 2022 by Friedman & Bruya, Inc. from the The Riley Group MLK Grassy Lot-Site11 2021-552-17, F&BI 204171 project. Samples were logged in under the laboratory ID's listed below.

<u>The Riley Group</u>
TP1-2.5
TP1-5
TP1-7.5
TP1-9
TP2-2.5
TP2-5
TP2-7.5
TP2-8.75
TP3-2.5
TP3-5
TP3-6.5
TP4-2.5
TP4-5
TP4-8.5

Several 8260D compounds exceeded the acceptance criteria in the matrix spike sample. The compounds were not detected, therefore the data were acceptable.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 04/19/22 Date Received: 04/12/22 Project: MLK Grassy Lot-Site11 2021-552-17, F&BI 204171 Date Extracted: 04/12/22 Date Analyzed: 04/12/22

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR GASOLINE, DIESEL AND HEAVY OIL BY NWTPH-HCID

Results Reported on a Dry Weight Basis Results Reported as Not Detected (ND) or Detected (D)

THE DATA PROVIDED BELOW WAS PERFORMED PER THE GUIDELINES ESTABLISHED BY THE WASHINGTON DEPARTMENT OF ECOLOGY AND WERE NOT DESIGNED TO PROVIDE INFORMATION WITH REGARDS TO THE ACTUAL IDENTIFICATION OF ANY MATERIAL PRESENT

<u>Sample ID</u> Laboratory ID	<u>Gasoline</u>	<u>Diesel</u>	<u>Heavy Oil</u>	Surrogate <u>(% Recovery)</u> (Limit 48-168)
TP1-5 204171-02	ND	ND	ND	97
TP1-7.5 204171-03	ND	ND	ND	94
TP2-5 204171-06	ND	ND	ND	98
TP3-6.5 204171-11	ND	ND	ND	97
TP4-5 204171-13	ND	ND	ND	96
TP4-8.5 204171-14	ND	ND	ND	96
Method Blank 02-871 MB	ND	ND	ND	107

ND - Material not detected at or above 20 mg/kg gas, 50 mg/kg diesel and 250 mg/kg heavy oil.

ENVIRONMENTAL CHEMISTS

Client ID:	TP1-7.5	Client:	The Riley Group
Date Received:	04/12/22	Project:	MLK Grassy Lot-Site11
Date Extracted:	04/13/22	Lab ID:	204171-03
Date Analyzed:	04/13/22	Data File:	204171-03.152
Matrix:	Soil	Instrument:	ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	2.77		
Cadmium	<1		
Chromium	10.6		
Lead	3.06		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Client ID:	TP2-5	Client:	The Riley Group
Date Received:	04/12/22	Project:	MLK Grassy Lot-Site11
Date Extracted:	04/13/22	Lab ID:	204171-06
Date Analyzed:	04/13/22	Data File:	204171-06.153
Matrix:	Soil	Instrument:	ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	4.88		
Cadmium	<1		
Chromium	4.75		
Lead	5.84		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	TP3-6.5 04/12/22 04/13/22 04/13/22 Soil	Client: Project: Lab ID: Data File:	The Riley Group MLK Grassy Lot-Site11 204171-11 204171-11.154 ICPMS2
Matrix.	5011	instrument.	ICFM62
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	4.59		
Cadmium	<1		
Lead	3.02		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	TP3-6.5	Client:	The Riley Group
Date Received:	04/12/22	Project:	MLK Grassy Lot-Site11
Date Extracted:	04/13/22	Lab ID:	204171-11 x5
Date Analyzed:	04/14/22	Data File:	204171-11 x5.137
Matrix:	Soil	Instrument:	ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		
Chromium	8.74		

8.74

ENVIRONMENTAL CHEMISTS

Client ID:	TP4-8.5	Client:	The Riley Group
Date Received:	04/12/22	Project:	MLK Grassy Lot-Site11
Date Extracted:	04/13/22	Lab ID:	204171-14
Date Analyzed:	04/13/22	Data File:	204171-14.155
Matrix:	Soil	Instrument:	ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	3.03		
Cadmium	<1		
Chromium	6.40		
Lead	4.03		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	Method Blank NA 04/13/22 04/13/22 Soil	Client: Project: Lab ID: Data File: Instrument:	The Riley Group MLK Grassy Lot-Site11 I2-281 mb I2-281 mb.064 ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	<1		
Cadmium	<1		
Chromium	<1		
Lead	<1		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	TP1-7.5		Client:	The Riley Group	
Date Received:	04/12/22		Project:	MLK Grassy Lot-Site	11
Date Extracted:	04/12/22		Lab ID:	204171-03	
Date Analyzed:	04/12/22		Data File:	041215.D	
Matrix:	Soil		Instrument:	GCMS4	
Units:	mg/kg (ppr	n) Dry Weight	Operator :	RF	
	0 0 11	, , ,	т т		
C I		0/ D	Lower	Upper	
Surrogates:	14	% Recovery:	Limit:	Limit:	
1,2-Dichloroethane	- d 4	99	90	109	
Toluene-d8		95	89	112	
4-Bromofluorobenz	ene	106	84	115	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluorome	thane	< 0.5	1,3-Dich	loropropane	< 0.05
Chloromethane		< 0.5	Tetrachl	loroethene	< 0.025
Vinyl chloride		< 0.05	Dibromo	ochloromethane	< 0.05
Bromomethane		< 0.5	1,2-Dibr	omoethane (EDB)	< 0.05
Chloroethane		< 0.5	Chlorobe	enzene	< 0.05
Trichlorofluoromet	hane	< 0.5	Ethylber	nzene	< 0.05
Acetone		<5	1,1,1,2-7	etrachloroethane	< 0.05
1,1-Dichloroethene		< 0.05	Total Xy	lenes	< 0.15
Hexane		< 0.25	Styrene		< 0.05
Methylene chloride		< 0.5	Isopropy	lbenzene	< 0.05
Methyl t-butyl ethe	r (MTBE)	< 0.05	Bromofo	rm	< 0.05
trans-1,2-Dichloroe	thene	< 0.05	n-Propy	lbenzene	< 0.05
1,1-Dichloroethane		< 0.05	Bromobe	enzene	< 0.05
2,2-Dichloropropan	e	< 0.05	1,3,5-Tri	imethylbenzene	< 0.05
cis-1,2-Dichloroethe	ene	< 0.05	1,1,2,2-7	Cetrachloroethane	< 0.05
Chloroform		< 0.05	1,2,3-Tri	ichloropropane	< 0.05
2-Butanone (MEK)		<1	2-Chloro	otoluene	< 0.05
1,2-Dichloroethane	(EDC)	< 0.05	4-Chloro	otoluene	< 0.05
1,1,1-Trichloroetha	ne	< 0.05	tert-But	ylbenzene	< 0.05
1,1-Dichloropropen	е	< 0.05	1,2,4-Tri	imethylbenzene	< 0.05
Carbon tetrachlorid	le	< 0.05	sec-Buty	lbenzene	< 0.05
Benzene		< 0.03	p-Isopro	pyltoluene	< 0.05
Trichloroethene		< 0.02	1,3-Dich	lorobenzene	< 0.05
1,2-Dichloropropan	e	< 0.05	1,4-Dich	lorobenzene	< 0.05
Bromodichlorometh	nane	< 0.05	1,2-Dich	lorobenzene	< 0.05
Dibromomethane		< 0.05	1,2-Dibr	omo-3-chloropropane	< 0.5
4-Methyl-2-pentance	one	<1	1,2,4-Tri	ichlorobenzene	< 0.25
cis-1,3-Dichloroproj	oene	< 0.05	Hexachl	orobutadiene	< 0.25
Toluene	-	< 0.05	Naphtha	alene	< 0.05
trans-1,3-Dichlorop	ropene	< 0.05	1,2,3-Tri	ichlorobenzene	< 0.25
1,1,2-Trichloroetha	ne	< 0.05			
2-Hexanone		< 0.5			

ENVIRONMENTAL CHEMISTS

Client Sample ID:	TP2-5		Client:	The Riley Group	
Date Received:	04/12/22		Project:	MLK Grassy Lot-Site	11
Date Extracted:	04/12/22		Lab ID:	204171-06	
Date Analyzed:	04/12/22		Data File:	041216.D	
Matrix:	Soil		Instrument:	GCMS4	
Units:	mg/kg (ppr	n) Dry Weight	Operator :	\mathbf{RF}	
			Lower	Unner	
Surrogates:		% Recovery:	Limit:	Limit:	
1.2-Dichloroethane	-d4	104	90	109	
Toluene-d8		94	89	112	
4-Bromofluorobenz	ene	107	84	115	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluorome	ethane	< 0.5	1,3-Dich	loropropane	< 0.05
Chloromethane		< 0.5	Tetrachl	loroethene	< 0.025
Vinyl chloride		< 0.05	Dibromo	ochloromethane	< 0.05
Bromomethane		< 0.5	1,2-Dibr	omoethane (EDB)	< 0.05
Chloroethane		< 0.5	Chlorob	enzene	< 0.05
Trichlorofluoromet	hane	< 0.5	Ethylber	nzene	< 0.05
Acetone		<5	1,1,1,2-7	Tetrachloroethane	< 0.05
1,1-Dichloroethene		< 0.05	Total Xy	vlenes	< 0.15
Hexane		< 0.25	Styrene		< 0.05
Methylene chloride	•	< 0.5	Isopropy	lbenzene	< 0.05
Methyl t-butyl ethe	er (MTBE)	< 0.05	Bromofo	orm	< 0.05
trans-1,2-Dichloroe	ethene	< 0.05	n-Propy	lbenzene	< 0.05
1,1-Dichloroethane		< 0.05	Bromobe	enzene	< 0.05
2,2-Dichloropropan	ie	< 0.05	1,3,5-Tr	imethylbenzene	< 0.05
cis-1,2-Dichloroeth	ene	< 0.05	1,1,2,2-7	Tetrachloroethane	< 0.05
Chloroform		< 0.05	1,2,3-Tri	ichloropropane	< 0.05
2-Butanone (MEK)		<1	2-Chloro	otoluene	< 0.05
1,2-Dichloroethane	(EDC)	< 0.05	4-Chloro	otoluene	< 0.05
1,1,1-Trichloroetha	.ne	< 0.05	tert-But	ylbenzene	< 0.05
1,1-Dichloropropen	e	< 0.05	1,2,4-Tr	imethylbenzene	< 0.05
Carbon tetrachlori	de	< 0.05	sec-Buty	lbenzene	< 0.05
Benzene		< 0.03	p-Isopro	pyltoluene	< 0.05
Trichloroethene		< 0.02	1,3-Dich	lorobenzene	< 0.05
1,2-Dichloropropan	e	< 0.05	1,4-Dich	lorobenzene	< 0.05
Bromodichloromet	nane	< 0.05	1,2-Dich	lorobenzene	< 0.05
Dibromomethane		< 0.05	1,2-Dibr	omo-3-chloropropane	< 0.5
4-Methyl-2-pentan	one	<1	1,2,4-Tr	ichlorobenzene	< 0.25
cis-1,3-Dichloropro	pene	< 0.05	Hexachl	orobutadiene	< 0.25
Toluene		< 0.05	Naphtha	alene	< 0.05
trans-1,3-Dichlorop	oropene	< 0.05	1,2,3-Tr	ichlorobenzene	< 0.25
1,1,2-Trichloroetha	ne	< 0.05			
2-Hexanone		< 0.5			

ENVIRONMENTAL CHEMISTS

Client Sample ID:	TP3-6.5		Client:	The Riley Group	
Date Received:	04/12/22		Project:	MLK Grassy Lot-Site	11
Date Extracted:	04/12/22		Lab ID:	204171-11	
Date Analyzed:	04/12/22		Data File:	041217.D	
Matrix:	Soil		Instrument:	GCMS4	
Units:	mg/kg (ppr	n) Dry Weight	Operator :	RF	
	0 0 11		т	тт	
Componetes		0/ Decorrorry	Lower	Upper Limit	
Surrogates:	14	% Recovery:	Limit:	Limit:	
1,2-Dichloroethane	-α4	100	90	109	
Toluene-d8		94	89	112	
4-Bromofluorobenz	ene	110	84	115	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluorome	thane	< 0.5	1,3-Dich	loropropane	< 0.05
Chloromethane		< 0.5	Tetrach	loroethene	< 0.025
Vinyl chloride		< 0.05	Dibromo	ochloromethane	< 0.05
Bromomethane		< 0.5	1,2-Dibr	omoethane (EDB)	< 0.05
Chloroethane		< 0.5	Chlorob	enzene	< 0.05
Trichlorofluoromet	hane	< 0.5	Ethvlber	nzene	< 0.05
Acetone		<5	1.1.1.2-7	Tetrachloroethane	< 0.05
1.1-Dichloroethene		< 0.05	Total Xv	lenes	< 0.15
Hexane		< 0.25	Stvrene		< 0.05
Methylene chloride		< 0.5	Isopropy	lbenzene	< 0.05
Methyl t-butyl ethe	er (MTBE)	< 0.05	Bromofo	orm	< 0.05
trans-1,2-Dichloroe	thene	< 0.05	n-Propy	lbenzene	< 0.05
1,1-Dichloroethane		< 0.05	Bromob	enzene	< 0.05
2,2-Dichloropropan	e	< 0.05	1,3,5-Tr	imethylbenzene	< 0.05
cis-1,2-Dichloroeth	ene	< 0.05	1,1,2,2-7	Tetrachloroethane	< 0.05
Chloroform		< 0.05	1,2,3-Tr	ichloropropane	< 0.05
2-Butanone (MEK)		<1	2-Chloro	otoluene	< 0.05
1,2-Dichloroethane	(EDC)	< 0.05	4-Chloro	otoluene	< 0.05
1,1,1-Trichloroetha	ne	< 0.05	tert-But	ylbenzene	< 0.05
1,1-Dichloropropen	e	< 0.05	1,2,4-Tr	imethylbenzene	< 0.05
Carbon tetrachlorid	le	< 0.05	sec-Buty	lbenzene	< 0.05
Benzene		< 0.03	p-Isopro	pyltoluene	< 0.05
Trichloroethene		< 0.02	1,3-Dich	lorobenzene	< 0.05
1,2-Dichloropropan	e	< 0.05	1,4-Dich	lorobenzene	< 0.05
Bromodichlorometh	nane	< 0.05	1,2-Dich	lorobenzene	< 0.05
Dibromomethane		< 0.05	1,2-Dibr	omo-3-chloropropane	< 0.5
4-Methyl-2-pentane	one	<1	1,2,4-Tr	ichlorobenzene	< 0.25
cis-1,3-Dichloropro	pene	< 0.05	Hexachl	orobutadiene	< 0.25
Toluene		< 0.05	Naphtha	alene	< 0.05
trans-1,3-Dichlorop	oropene	< 0.05	1,2,3-Tr	ichlorobenzene	< 0.25
1,1,2-Trichloroetha	ne	< 0.05			
2-Hexanone		< 0.5			

ENVIRONMENTAL CHEMISTS

Client Sample ID:	TP4-8.5		Client:	The Riley Group	
Date Received:	04/12/22		Project:	MLK Grassy Lot-Site	11
Date Extracted:	04/12/22		Lab ID:	204171-14	
Date Analyzed:	04/12/22		Data File:	041218.D	
Matrix:	Soil		Instrument:	GCMS4	
Units:	mg/kg (ppr	n) Dry Weight	Operator :	RF	
	0 0 11	, ,	т	тт	
Commomotore		0/ Decorrorry	Lower	Upper Limit	
1.9 Dichloroothono	44	% necovery:		100	
Toluono de	-04	95	90	109	
1 Druene-uo	000	92 106	89 84	112	
4-Dromonuorobenz	ene	106	04	110	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluorome	thane	< 0.5	1,3-Dich	loropropane	< 0.05
Chloromethane		< 0.5	Tetrach	loroethene	< 0.025
Vinyl chloride		< 0.05	Dibromo	ochloromethane	< 0.05
Bromomethane		< 0.5	1,2-Dibr	omoethane (EDB)	< 0.05
Chloroethane		< 0.5	Chlorob	enzene	< 0.05
Trichlorofluoromet	hane	< 0.5	Ethylber	nzene	< 0.05
Acetone		<5	1,1,1,2-7	Tetrachloroethane	< 0.05
1,1-Dichloroethene		< 0.05	Total Xy	vlenes	< 0.15
Hexane		< 0.25	Styrene		< 0.05
Methylene chloride		< 0.5	Isopropy	lbenzene	< 0.05
Methyl t-butyl ethe	er (MTBE)	< 0.05	Bromofo	orm	< 0.05
trans-1,2-Dichloroe	thene	< 0.05	n-Propy	lbenzene	< 0.05
1,1-Dichloroethane		< 0.05	Bromob	enzene	< 0.05
2,2-Dichloropropan	e	< 0.05	1,3,5-Tr	imethylbenzene	< 0.05
cis-1,2-Dichloroeth	ene	< 0.05	1,1,2,2-7	Tetrachloroethane	< 0.05
Chloroform		< 0.05	1,2,3-Tr	ichloropropane	< 0.05
2-Butanone (MEK)		<1	2-Chloro	otoluene	< 0.05
1,2-Dichloroethane	(EDC)	< 0.05	4-Chloro	otoluene	< 0.05
1,1,1-Trichloroetha	ne	< 0.05	tert-But	ylbenzene	< 0.05
1,1-Dichloropropen	e	< 0.05	1,2,4-Tr	imethylbenzene	< 0.05
Carbon tetrachlorid	le	< 0.05	sec-Buty	lbenzene	< 0.05
Benzene		< 0.03	p-Isopro	pyltoluene	< 0.05
Trichloroethene		< 0.02	1,3-Dich	lorobenzene	< 0.05
1,2-Dichloropropan	e	< 0.05	1,4-Dich	lorobenzene	< 0.05
Bromodichlorometh	nane	< 0.05	1,2-Dich	lorobenzene	< 0.05
Dibromomethane		< 0.05	1,2-Dibr	omo-3-chloropropane	< 0.5
4-Methyl-2-pentane	one	<1	1,2,4-Tr	ichlorobenzene	< 0.25
cis-1,3-Dichloropro	pene	< 0.05	Hexachl	orobutadiene	< 0.25
Toluene		< 0.05	Naphtha	alene	< 0.05
trans-1,3-Dichlorop	oropene	< 0.05	1,2,3-Tr	ichlorobenzene	< 0.25
1,1,2-Trichloroetha	ne	< 0.05			
2-Hexanone		< 0.5			

ENVIRONMENTAL CHEMISTS

Client Sample ID:	Method Bla	ank	Client:	The Riley Group	
Date Received:	Not Applic	able	Project:	MLK Grassy Lot-Site	11
Date Extracted:	04/12/22		Lab ID:	02-802 mb	
Date Analyzed:	04/12/22		Data File:	041209.D	
Matrix:	Soil		Instrument:	GCMS4	
Units:	mg/kg (ppr	n) Dry Weight	Operator:	RF	
	0 0 11	, , ,	- -		
C I		0/ D	Lower	Upper	
Surrogates:	1.4	% Recovery:	Limit:	Limit:	
1,2-Dichloroethane	·d4	100	90	109	
Toluene-d8		95	89	112	
4-Bromofluorobenze	ene	106	84	115	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluorome	thane	< 0.5	1,3-Dich	loropropane	< 0.05
Chloromethane		< 0.5	Tetrach	loroethene	< 0.025
Vinyl chloride		< 0.05	Dibromo	ochloromethane	< 0.05
Bromomethane		< 0.5	1,2-Dibr	omoethane (EDB)	< 0.05
Chloroethane		< 0.5	Chlorob	enzene	< 0.05
Trichlorofluorometh	nane	< 0.5	Ethylbe	nzene	< 0.05
Acetone		<5	1.1.1.2-7	 Fetrachloroethane	< 0.05
1.1-Dichloroethene		< 0.05	Total Xv	vlenes	< 0.15
Hexane		< 0.25	Styrene		< 0.05
Methylene chloride		< 0.5	Isopropy	< 0.05	
Methyl t-butyl ethe	r (MTBE)	< 0.05	Bromofo	orm	< 0.05
trans-1.2-Dichloroe	thene	< 0.05	n-Propy	lbenzene	< 0.05
1,1-Dichloroethane		< 0.05	Bromob	enzene	< 0.05
2.2-Dichloropropan	е	< 0.05	1.3.5-Tr	imethvlbenzene	< 0.05
cis-1.2-Dichloroethe	ene	< 0.05	1.1.2.2-7	Tetrachloroethane	< 0.05
Chloroform		< 0.05	1.2.3-Tr	ichloropropane	< 0.05
2-Butanone (MEK)		<1	2-Chloro	otoluene	< 0.05
1.2-Dichloroethane	(EDC)	< 0.05	4-Chloro	otoluene	< 0.05
1,1,1-Trichloroetha	ne	< 0.05	tert-But	vlbenzene	< 0.05
1.1-Dichloropropen	9	< 0.05	1.2.4-Tr	imethvlbenzene	< 0.05
Carbon tetrachlorid	le	< 0.05	sec-Buty	vlbenzene	< 0.05
Benzene		< 0.03	p-Isopro	pyltoluene	< 0.05
Trichloroethene		< 0.02	1,3-Dich	lorobenzene	< 0.05
1,2-Dichloropropan	е	< 0.05	1,4-Dich	lorobenzene	< 0.05
Bromodichlorometh	ane	< 0.05	1,2-Dich	lorobenzene	< 0.05
Dibromomethane		< 0.05	1,2-Dibr	omo-3-chloropropane	< 0.5
4-Methyl-2-pentanc	one	<1	1,2,4-Tr	ichlorobenzene	< 0.25
cis-1,3-Dichloropror	oene	< 0.05	Hexachl	orobutadiene	< 0.25
Toluene		< 0.05	Naphtha	alene	< 0.05
trans-1,3-Dichlorop	ropene	< 0.05	1,2,3-Tr	ichlorobenzene	< 0.25
1,1,2-Trichloroetha	ne	< 0.05			
2-Hexanone		< 0.5			

ENVIRONMENTAL CHEMISTS

Date of Report: 04/19/22 Date Received: 04/12/22 Project: MLK Grassy Lot-Site11 2021-552-17, F&BI 204171

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 204154-01 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Arsenic	mg/kg (ppm)	10	1.00	80	85	75 - 125	6
Cadmium	mg/kg (ppm)	10	<1	96	101	75 - 125	5
Chromium	mg/kg (ppm)	50	13.1	84	88	75 - 125	5
Lead	mg/kg (ppm)	50	1.55	95	98	75 - 125	3
Mercury	mg/kg (ppm	5	<1	102	106	75 - 125	4

Laboratory Code: Laboratory Control Sample

Haboratory co.	ac. Baseratory com	cioi Sampio		
			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	mg/kg (ppm)	10	87	80-120
Cadmium	mg/kg (ppm)	10	99	80-120
Chromium	mg/kg (ppm)	50	98	80-120
Lead	mg/kg (ppm)	50	105	80-120
Mercury	mg/kg (ppm)	5	113	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 04/19/22 Date Received: 04/12/22 Project: MLK Grassy Lot-Site11 2021-552-17, F&BI 204171

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 204171-03 (Matrix Spike)

		- /	Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	1	<0.5	19	19	10-142	0
Chloromethane	mg/kg (ppm)	1	< 0.5	60	55	10-126	9
Vinyl chloride	mg/kg (ppm)	1	< 0.05	71	66	10-138	7
Bromomethane	mg/kg (ppm)	1	< 0.5	74	62	10-163	18
Chloroethane	mg/kg (ppm)	1	< 0.5	82	77	10-176	6
Trichlorofluoromethane	mg/kg (ppm)	1	<0.5	71	66	10-176	7
Acetone	mg/kg (ppm)	5	<5	141	118	10-163	18
1,1-Dichloroethene	mg/kg (ppm)	1	<0.05	81	75	10-160	8
Hexane Mothylono ablorido	mg/kg (ppm)	1	<0.25	76	69	10-137	10
Methylene chloride Methyl t-butyl other (MTBE)	mg/kg (ppm)	1	<0.05	107	95 108	21.145	12
trans.1 2-Dichloroethene	mg/kg (ppm)	1	<0.05	101	91	14.137	10
1.1-Dichloroethane	mg/kg (ppm)	1	<0.05	109	97	19-140	12
2.2-Dichloropropane	mg/kg (ppm)	1	<0.05	124	113	10-158	9
cis-1.2-Dichloroethene	mg/kg (ppm)	1	< 0.05	110	98	25 - 135	12
Chloroform	mg/kg (ppm)	1	< 0.05	106	95	21 - 145	11
2-Butanone (MEK)	mg/kg (ppm)	5	<1	128	112	19-147	13
1,2-Dichloroethane (EDC)	mg/kg (ppm)	1	< 0.05	112	99	12-160	12
1,1,1-Trichloroethane	mg/kg (ppm)	1	< 0.05	104	98	10-156	6
1,1-Dichloropropene	mg/kg (ppm)	1	< 0.05	109	99	17-140	10
Carbon tetrachloride	mg/kg (ppm)	1	< 0.05	100	91	9-164	9
Benzene	mg/kg (ppm)	1	< 0.03	109	96	29-129	13
Trichloroethene	mg/kg (ppm)	1	< 0.02	110	98	21-139	12
1,2-Dichloropropane	mg/kg (ppm)	1	<0.05	119	104	30-135	13
Dikuomomothono	mg/kg (ppm)	1	<0.05	110	97	23-133	13
A Mathal 2 pontanona	mg/kg (ppm)	1	<0.05	113	101	23-140	11
4-Methyl-2-pentanone	mg/kg (ppm)	5 1	<0.05	127	101	24-100	15
Toluene	mg/kg (ppm)	1	<0.05	130	112	35.130	15
trans.1 3-Dichloropropene	mg/kg (ppm)	1	<0.05	136	112	26.149	14
1.1.2-Trichloroethane	mg/kg (ppm)	1	<0.05	136	116	10-205	16
2-Hexanone	mg/kg (ppm)	5	< 0.5	155	131	15-166	17
1,3-Dichloropropane	mg/kg (ppm)	1	< 0.05	136	118	31-137	14
Tetrachloroethene	mg/kg (ppm)	1	< 0.025	129	112	20-133	14
Dibromochloromethane	mg/kg (ppm)	1	< 0.05	115	105	28-150	9
1,2-Dibromoethane (EDB)	mg/kg (ppm)	1	< 0.05	136	117	28-142	15
Chlorobenzene	mg/kg (ppm)	1	< 0.05	131 vo	114	32 - 129	14
Ethylbenzene	mg/kg (ppm)	1	< 0.05	135	116	32-137	15
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	1	<0.05	119	105	31-143	12
Total Xylenes	mg/kg (ppm)	3	<0.15	134	116	34-136	14
Styrene	mg/kg (ppm)	1	<0.05	133	110	30-137	10
Bromoform	mg/kg (ppm)	1	<0.05	135	96	01-142 91-156	15
n-Pronylbenzene	mg/kg (ppm)	1	<0.05	145	127	23-146	13
Bromohenzene	mg/kg (ppm)	1	<0.05	139 vo	120	34-130	15
1.3.5-Trimethylbenzene	mg/kg (ppm)	1	< 0.05	145	125	18-149	15
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	1	< 0.05	144 vo	123	28-140	16
1,2,3-Trichloropropane	mg/kg (ppm)	1	< 0.05	138	121	25 - 144	13
2-Chlorotoluene	mg/kg (ppm)	1	< 0.05	142 vo	124	31-134	14
4-Chlorotoluene	mg/kg (ppm)	1	< 0.05	142 vo	123	31-136	14
tert-Butylbenzene	mg/kg (ppm)	1	< 0.05	145 vo	125	30-137	15
1,2,4-Trimethylbenzene	mg/kg (ppm)	1	< 0.05	143	124	10-182	14
sec-Butylbenzene	mg/kg (ppm)	1	< 0.05	146 vo	126	23-145	15
p-isopropyltoluene	mg/kg (ppm)	1	< 0.05	144	125	21-149	14
1,3-Dichlorobenzene	mg/kg (ppm)	1	<0.05	136 VO	122	30-131	11
1,4-Dichlorobenzene	mg/kg (ppm)	1	<0.05	130 V0	119	29-129	13
1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropano	mg/kg (ppm)	1	<0.00 <0.5	140 V0 198	121	01-10Z 11-161	10 19
1.2.4.Trichlorohonzono	mg/kg (ppm)	1	<0.5	136	120	22.142	12
Hexachlorobutadiene	mg/kg (ppill)	1	<0.25	137	120	10-142	12
Naphthalene	mg/kg (ppm)	1	<0.05	141	122	14-157	14
1,2,3 Trichlorobenzene	mg/kg (ppm)	1	< 0.25	139	118	20-144	16

ENVIRONMENTAL CHEMISTS

Date of Report: 04/19/22 Date Received: 04/12/22 Project: MLK Grassy Lot-Site11 2021-552-17, F&BI 204171

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: Laboratory Control Sample

	I I I I I I		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Dichlorodifluoromethane	mg/kg (ppm)	1	47	10-146
Chloromethane	mg/kg (ppm)	1	67	27-133
Vinyl chloride	mg/kg (ppm)	1	86	22-139
Bromomethane	mg/kg (ppm)	1	73	38-114
Unioroethane Thisbless Constant in a second	mg/kg (ppm)	1	78	9-163
Acotono	mg/kg (ppm)	5	18	10-196
1 1-Dichloroothono	mg/kg (ppm)	1	107	47-128
Herane	mg/kg (ppm)	1	107	43-142
Methylene chloride	mg/kg (ppm)	1	84	10-184
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	1	98	60-123
trans-1,2-Dichloroethene	mg/kg (ppm)	1	89	67-129
1,1-Dichloroethane	mg/kg (ppm)	1	91	68-115
2,2-Dichloropropane	mg/kg (ppm)	1	105	52-170
cis-1,2-Dichloroethene	mg/kg (ppm)	1	83	72-127
Chloroform	mg/kg (ppm)	1	78	66-120
2-Butanone (MEK)	mg/kg (ppm)	5	97	30-197
1,2-Dichloroethane (EDC)	mg/kg (ppm)	1	83	56-135
1,1,1-Trichloroethane	mg/kg (ppm)	1	86	62-131
1,1-Dichloropropene	mg/kg (ppm)	1	86	69-128
Bonzono	mg/kg (ppm)	1	80	60-139 71 118
Twishlowoothone	mg/kg (ppm)	1	04 85	69 191
1 2.Dichloropropane	mg/kg (ppiii)	1	90	72.127
Bromodichloromethane	mg/kg (ppm)	1	85	57-126
Dibromomethane	mg/kg (ppm)	1	86	62-123
4-Methyl-2-pentanone	mg/kg (ppm)	5	99	45-145
cis-1,3-Dichloropropene	mg/kg (ppm)	1	90	67-122
Toluene	mg/kg (ppm)	1	96	66-126
trans-1,3-Dichloropropene	mg/kg (ppm)	1	105	72-132
1,1,2-Trichloroethane	mg/kg (ppm)	1	99	64-115
2-Hexanone	mg/kg (ppm)	5	115	33-152
1,3-Dichloropropane	mg/kg (ppm)	1	102	72-130
Dihawashlawashlawa	mg/kg (ppm)	1	94	72-114
1.2 Dibromocniorometnane	mg/kg (ppm)	1	92	00-121 74 129
(LDB)	mg/kg (ppm)	1	104	74-132
Ethylbenzene	mg/kg (ppm)	1	97	64.123
1 1 1 2-Tetrachloroethane	mg/kg (ppm)	1	92	64-121
Total Xvlenes	mg/kg (ppm)	3	97	78-122
Styrene	mg/kg (ppm)	1	96	74-126
Isopropylbenzene	mg/kg (ppm)	1	97	76-127
Bromoform	mg/kg (ppm)	1	88	56-132
n-Propylbenzene	mg/kg (ppm)	1	106	74-124
Bromobenzene	mg/kg (ppm)	1	104	72-122
1,3,5-Trimethylbenzene	mg/kg (ppm)	1	105	76-126
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	1	107	56-143
1,2,3-Trichloropropane	mg/kg (ppm)	1	106	61-137
2-Chlorotoluene	mg/kg (ppm)	1	103	74-121
4-Uniorotoluene	mg/kg (ppm)	1	104	70-122
1.2.4-Trimethylhenzene	mg/kg (ppm)	1	105	76-125
sec-Butylbenzene	mg/kg (ppm)	1	105	71-130
p-Isopropyltoluene	mg/kg (ppm)	1	104	70-132
1.3-Dichlorobenzene	mg/kg (ppm)	1	99	75-121
1,4-Dichlorobenzene	mg/kg (ppm)	1	99	74-117
1,2-Dichlorobenzene	mg/kg (ppm)	1	102	76-121
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	1	100	58-138
1,2,4-Trichlorobenzene	mg/kg (ppm)	1	97	64-135
Hexachlorobutadiene	mg/kg (ppm)	1	101	50-153
Naphthalene	mg/kg (ppm)	1	100	63-140
1.2.3-Trichlorobenzene	mg/kg (ppm)	1	97	63-138

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

 ${\rm d}$ - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

				SAMPLE	E CHAIN	OF	CUS	то	DY			. .					Be	24
202	1171 Report To Eric Zuer	m		SAMPL	ERS (signo	iture) . Vi	ndl	ord	······································	Ô.	4-1) j	2]	Page TUR	#of	<u>2v5</u> IME	- 84 7
	Company RGI			PROJEC	CT NAME	1 L	. ()	7			PO#	-		j≯ St □ R	andaı USH_	rd turnaround		******
	Address 11522 Bo	thell way	NE	-	Irassy L	Sin	<u>te l</u>	1	202	-1-	552		1	Rus	ı char	rges authorize	d by:	
	City, State, ZIP_Both	ul, WA	98011	REMAR	KS indlaw@	vilou	-ara	20			OICE	TO			SAN cchive	MPLE DISPO samples	SAL	
	Phone 425-415-055	mail ezverne	riley-grou	P Project	specific RL	<u>s? - Y</u> e	es / 1	No		K	61			□ 0 Def	:her ault:	Dispose after	: 30 days	
							Ĺ			AN	ALYS	ES R	EQUE	STED]
	Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX EPA 8021	NWTPH-HCID	PAHs EPA 8270	PCBs EPA 8082	MTCA-5 weeks			No	ies	
	TP1-2.5	01A-E	4/11/22	8:20	soil	5							-					
	TP1-5	02	4/11/22	8:25	soil	5)	$\langle $								
	TP1-7.5	63	4/11/22	8:35	soil	5				$\langle \rangle$	$\langle $		\times					
	TP1-9	04	4/11/22	8:45	soil	5												
	TP2-2.5	05	4/11/22	9:00	Soil	5												
	TP2-5	06	4/11/22	9:05	Soil	5	· .			$\langle \rangle$	$\langle $		\times					
	TP2-7.5	07	4/11/22	9:10	soil	5												
	TP2-8.75	6B	4/11/22	9:15	Soi	5			-									
	TP3-2-5	09	4/11/22	9:30	Soil	5								e or	male	areceived	at 4	٥C
	TP3-5	10	4/11/22	9:35	soil	5												
·		SIC	GNATURE			PRIN	IT NA	ME		<u> </u>		0	OMP	ANY		DATE	TIME	1
	Friedman & Bruya, Inc. Ph (206) 285-8282	Relinquished by:	in R	indley	Sier	ra	Kir	ndl	iey			Ļ	ĠΙ			4/11/22	11:45	
	x (200) 200-0202	Received by:	1 An	$-\Lambda$	6	r^{7}	LIPT	х,	//			K	26	t		$ \mathcal{V} $	11:45	

edman & Bruya, Inc.	Relinquished by: Suito Kindley	Sierra Kindley	RGI	4/11/22 11:45
(206) 285-8282	Received by:	Gric Zuem	RGE	J 11:45
	Relinquished by:	Enic Zvern	RGF	Y-18-22
	Received by:	Crystal Cross	Fedex	4-12-72 9:36
	Received? millight	Whan phan.	F <bl< td=""><td>4-12-22 11:00</td></bl<>	4-12-22 11:00
				·

				SA	MPLI	E CHAIN	IOF	CUS	STO	DY	•								_	E
04171 Fric 71	iern			Γ	SAMPL	ERS (signe	ature)		· ~ 2	1		00	1-17	2 - 2	-2]	E	?age #	<u>2</u>	of 2
Company RGI	thell	Wa	H NE		PROJE MLK (CT NAME Grassy l	iot -	Site	<i>K</i> e 11	ind (fer Jo	F _P 21	0# -53	52-	-17		T Star RUS lush (FURN adard SH charge	AROUNE turnarou es authori) TIME nd ized by:
City, State, ZIP_Both Phone 425 - 445 - 0551	el[, 1 mailez	WA	98011 eriley-	-grovp	REMAF CC: SK Project	RKS indley er specific RL	iley - 15? - Ye	groc es /	P. No		IN (1V0 2 (ICE '	TO			Arch Oth Oefau	SAMI hive s: .er .ilt: Di	PLE DISP amples ispose af	OSAL ter 30 day
			···				· · · · · · · · · · · · · · · · · · ·				A	NAI	LYSE	S RE	QUE	ESTE	D			
Sample ID		Lab II) Date Sampl	ed Sa	Time ampled	Sample Type	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX EPA 8021	NWTPH-HCID	VOCs EPA 8260	PAHs EPA 8270	PCBs EPA 8082	MTCA-5 webbs				1	∛otes
TP3-6.5	1	(A-1	5 4/11/2	12 9:	:45	501	5				X	\times			\times					
TP4 - 2.5	1	2	4/11/2	2 10	: 00	5oil	5													
TP4-5	1	3	4/11/2	2 10	:05	ठनां।	5				X									
TP4-8.5		ч	4/11/2	2 10	: /o	Soi/	5				X	X			X					
																,				
										·									 	
															S	mp	les 1	rece	ved at	<u>Ч.</u> ос
Enjodnan & Druce La	Relinousi	shad bre	SIGNATUR	E			PRIN	IT N	AMF	3				C	OMF	PANY	<u>Y</u>		DATE	TIMI
Ph. (206) 285-8282	Received	by:	Sino	- Pú	rdley	Sie	ma	<u>. </u>	in <i>o</i>	le	¥			C	<u>pr</u> >/	<u>GI</u>	-		<u>4/11/2:</u> J/	2 11:4
	Relinquis	shed by	1/2/	\sim	- U-		<u>×C (</u> >:7	<u>~V</u> ·	<u>e 11</u> 3-11	-6	<u> </u>			₹ ₽	-63	<u>) </u>				<u> : M:</u>
	Received	by:				Cnj	stel		M	<u>)55</u>			F	ed	ž	<u>ــــــــــــــــــــــــــــــــــــ</u>			1-12-22	9:36
	nea v	er:	min	tan		Nhàn	n pri	WΛ					1	Fer	3 <u>r</u> :			1	4-12-22	- 11:00